
Here is CommandAllSlimsUSB as currently coded

[CommandAllSlimsUSB]

 USBwrbuf$ = "A12801"

 for clmn = 0 to 39 'ver113-3c

 USBwrbuf$ = USBwrbuf$ + ToHex$(cmdallarray(thisstep,clmn)+ filtbank)

 next clmn

 if USBdevice <> 0 then CALLDLL #USB, "UsbMSADeviceWriteString", USBdevice as long, USBwrbuf$ as ptr, 43 as short, result as boolean

 USBwrbuf$ = "A10100"+ ToHex$(filtbank)

 if USBdevice <> 0 then CALLDLL #USB, "UsbMSADeviceWriteString", USBdevice as long, USBwrbuf$ as ptr, 4 as short, result as boolean

 pdmcmd = phaarray(thisstep,0)*64 'ver111-39d

 USBwrbuf$ = "A30300"+ToHex$(le1 + fqud1 + le3 + fqud3 + pdmcmd)+ToHex$(pdmcmd + 32)+ToHex$(pdmcmd)

 if USBdevice <> 0 then CALLDLL #USB, "UsbMSADeviceWriteString", USBdevice as long, USBwrbuf$ as ptr, 6 as short, result as boolean

 lastpdmstate=phaarray(thisstep,0) 'ver114-6c

 return

The parallel port coding is this

[CommandAllSlims]'for SLIM Control and SLIM modules. Old PDM and old Filt Bank can be used 'ver111-31c

 for clmn = 0 to 39 'ver113-3c

 a= cmdallarray(thisstep,clmn)+ filtbank

 out port, a : out control, SELT:out control, contclear 'a is the data, without clock

 out port, a+1:out control, SELT:out control, contclear 'a+1 is data, plus clock

 next clmn

 out port, filtbank 'remove data, leaving filtbank data to filter bank.

 out control, SELT:out control, contclear 'disable buffer. filtbank signals will be latched to filter bank assembly

 pdmcmd = phaarray(thisstep,0)*64 'ver111-39d

 out port, le1 + fqud1 + le3 + fqud3 + pdmcmd 'present data to buffer input'ver111-39d

 out control, INIT: out control, contclear 'latch the buffer, moving the signals to the 5 modules'ver113-2a

 out port, pdmcmd + 32 'remove LEs and Fquds, leaving PDM data, but add a latch signal P2D5 for old PDM if used.'ver111-39d

 out control, INIT: out control, contclear 'sends latch signal to old PDM'ver113-2a

 out port, pdmcmd 'remove the added latch signal to PDM, leaving just the PDM's static data'ver111-39d

 out control, INIT: out control, contclear 'ver113-2a

 out port, 0 'bring all Data lines low. PDM data remains static

 lastpdmstate=phaarray(thisstep,0) 'ver114-6c

 return 'to [CommandThisStep]

I have tried a few ways to speed it up but have yet to find a good one – anyone with any good ideas let me know. I tried using a struct but I can’t find a

way to do this for example

 ' struct USBwritebuffer, bytes as char[64], dummy as short ' port as char[1], count as char[1], bytes as char[60]

 'USBwritebuffer.bytes[1].struct = 161

Liberty basic throws an error as it won’t let me index into the array – I guess I am doing something stupid…

I also tried forming the array in the dll with multiple DLL calls but that was slow too.

Anyway, here a trace – the time delay before the first write is not shown – at the moment it seems to take 5 ms for Liberty Basic to form the string in the

first part of the function ! There has GOT to be a better way.

The traces are:

D0 – clock

D1 – DDS1 data

D2 – DDS1 FQUD

D4 – PLL1 data

D5 – PPL1 LE

The sequence after the 3
rd

 division is the first USB command – clocking the 40 bits of data. The event just after the centre line is the second USB event –

writing filtbank – this seems pretty pointless so I will comment it out, The two pulses are the final event – pulsing FQUD and LE

Zooming in on the clocking of the data we get this (the second trace zooms in on part of the write)

