
Parallel port drivers 
 

I can’t do a full test here as I do not have a slim CB so these are logic analyser traces 

only. 

 

The command interface provided to the PC differs from the native USB controller in 

the following ways, but in essence the PC program does not need to care whether it is 

using the parallel port version or the native USB version – it uses commands A0-A3, 

A5, and B0-B2 regardless of the version of the firmware running on the USB 

controller. The USB controller presents the same interface to the PC. 

 

How is the right firmware loaded? Just program the eeprom on the USB controller 

with the right identity and the code loads automatically. 

 

USB Command 

Code 

Function Comments 

A0 Write port A Writes to parallel port P3 – this accesses 

the ADC control lines in the same way as 

native USB controller port PA 

A1 Write port B Writes to parallel port P1 – this accesses 

the DDA and PLL data and clock lines as 

well as filter select 

A2 Write port C Writes to parallel port P4 – currently 

unused 

A3 Write port D Writes to parallel port P2 – this accesses 

the FQUD and LE lines plus invert PDM 

A4 Write port E Has no parallel port equivalent 

A5 Port Reset Sets the parallel port data lines all low then 

pulses all 4 latch lines high then low again, 

setting every output line low 

A6 Raw write Bypasses the parallel port emulation and 

writes natively to USB ports A-E 

B0 Read mag ADC Writes to parallel port P3 to perform a 

conversion and clock the result back in via 

Port A bit 5 

B1 Read phase data Writes to parallel port P3 to perform a 

conversion and clock the result back in via 

Port A bit 4 

B2 Read both ADCs Writes to parallel port P3 to perform a 

conversion and clock the result back in via 

Port A bits 5 and 4 

 

 

ADC example 
 

ADC reading; this command to the USB card B1 02 01 10 01 requests conversion of 

both ADCs and the logic analyser trace is as shown 

 

Here the signal lines are as follows 



 

LA line Connects to Comment 

D0-7 D0-7 These are the 8 data pins into the parallel port 

D8 SELT Latches bus lines into P1 

D9 INIT Latches bus lines into P2 

D10 AUTO Latches bus lines into P3 

D11 STROBE Latches bus lines into P4 

 

 
 

The data bus is set to zeros, then D10 is raised. You can’t see the bus being cleared so 

here the low 4 bits of the bus have been forced high before the convert function is 

called 

 



 
 

And zooming in on the start 

 

 
 

The bus is forced low (D0-7). D10 is then raised (AUTO, opening the P3 latches and 

giving write access to ADConv and ADSerClk). 1us later, ADConv is raised (D7) and 



kept high for just over 3 usec. It is then lowered and ADSerClk is raised to start 

clocking out the result. 

 

The result data is not shown above – it is on ACK and WAIT which connect to USB 

controller port A bits PA4 and PA5 respectively. This data is clocked in and presented 

as the result in the same way as it is handled in the native USB case (see the ADC 

conversion main document) 

 

After clocking out the data, the latch signal (D10) is set low. 

 

 

Command All Slims 
 

Here is the trace for a section between steps. D5/D7/D10 activity is the ADC 

conversion as part of a step in the scan. D0-4 & D7 show the CommandAllSLims 

code setting the DDS and PL devices for the next step in the scan, followed in D8 

alone by the dll code latching the filtbank data. Finally at the far right is the FQUD & 

LE lines of the slims. 

 

 
 

Zooming in on the writing of data to the SLIMs shows this 

 



 
 

Ignore the transient in the middle of the signal high of D8 – this is an analyser glitch. 

The data lines are set, the SLIM-CB latch line raised and the data is clocked out into 

the devices. When it is over, the latch line is lowered, and raised again briefly 60 usec 

later to latch filtbank. 

Zooming in on the start of the data output stage 

 
 



The cloking cycle for the data is just over 1usec per bit, and there are 40 bits that are 

clocked. At the end of the 40 bits (below) the latch line is lowered again. 

 

 
 

Finally here is the latch event 

 
The data lines are set and the latch line raised, which latches data into the DDS and 

PLL chips. Then pdm data is latched by D5 and the bus latch closed again 



 


