Principles:
The ‘hold’ state for an ADC is CS low, clock high, at the end of a conversion. In order to start a new conversion, clock is set low.

An unused ADC would have CS set high. This means that the code cannot know whether it has just been set high (so a conversion would be in progress) or happened a while ago (in which case it is sleeping pending data output)

We also need to cater for error conditions and regain control gracefully
Data output is always the full 32 bits

Methods

If CS is low and clock is high, then it is probably the case that we are in hold at the end of a data conversion, so to start another we just drop clock low

If CS is high and clock is high, then this is either an initial condition or an ADC that was on hold previously whilst the other ADC was being used. This can also be corroborated by referring to the ADC used in the previous conversion (but in reality does not matter). As the device may either be in sleep or it may be converting, we need to allow it to complete, so the process is as follows. Set CS low and test SDO. If SDI is high then wait until it goes low. When SDO goes low clock it 5 times, the set CS high, then set CS and clock low to start a new conversion.
If both CS and clock are low either this is an error or an initial condition, and in all likelihood we are either waiting for conversion to complete or it is sleeping. Therefore treat as above – wait until SDO is low then clock 5 times and start a new conversion.

If CS is high and clock is low, this is probably an error, so handle again as above – set CS low and see if SDO is low or wait until it is.

In any of these last 3 cases where we are waiting for SDO to go low, we must timeout if it does not happen. In this case, it is possible that the ADC is faulty, off or not present (so we are going nowhere) or it is in the middle of data conversion. In this case, set CS and clock high to start a conversion (which hopefully we can sort out next time round) and return an error to the PC. It is possible that we are in the first 5 clock cycles so this will not work. Not sure if it makes sense to bother much here – it is not likely – or we could clock 5 times.
If we are asked to start a conversion on one ADC only, set the other ADC CS high. This has the implication that, if the other ADC was on hold at the end of a conversion, we will start one. This will get sorted out by the above logic when we next want to start, as we will find that when returning to that ADC, both clock and CS will be high with a conversion either in progress or complete.

Implications

The only gotcha that I can see is that if the caller requests conversions on ADCs in sequence (1 then 2 then 1 etc) as opposed to using one ADC repeatedly or using both in parallel, then there will be a delay before each conversion as a spurious conversion will need to complete. This will not be a problem if both ADCs are the same type as the extra delay to sort it out is very short, but if one is fast and one is slow, significant delays will be incurred. Switching at the end of sweeps is not a problem.
Code

Assume that this routine is called continually by the USB poll routine. The following pseudo code would seem to make sense.
Pseudo code on following pages. It is simple to extend this to dual ADCs

// ///

// Handle ADC conversions

// there are three copies of this routine for speed. One for ADC1 and one for ADC2, plus one for both.
// this routine is called repeatedly from main polling loop
void handle_adc1(void) // Called repeatedly while the device is idle

{

 // see if an ADC start is pending

 if(ADC_START_REQUESTED)

 {

 // case 1 - we have just tried to abort a sequence and now need to start conversion

// we force a start by raising CS and lowering it (clk is already low)

// case 2 - we previously finished a conversion with this ADC - CS is low and Clk is high

// so the ADC is being held ready to convert when we drop the clock line
 // in both cases raise CS, lower clock and lower CS to make code common for both

if(TARGET_CS_LOW && CLOCK_HIGH)

{

 // stop the other ADC (will probably cause an immediate conversion - sort it out later

 OTHER_CS_HIGH;

 // handle post DDS delay if one is requested (clock interrupt routing decrements this counter)
 // note – this is used for long delays – separate process for short delays (not shown)

 // when we return, we will execute this again from main poll loop.

 if(AdcReadDelay > 0)

return;

TARGET_CS_HIGH;

CLOCK_LOW;

TARGET_CS_LOW;

// next time round go check for completion of ADC conversion

 CLEAR_ADC_START_REQUESTED;

// next time round we handle adc result (below)

return;

}

// case 3 - CS was high so either startup condition or ADC was being held whilst other was used

// or of course it could be a fault condition. Either way set both low and proceed as fro case 4

else if(TARGET_CS_HIGH)

{

SET_CLOCK_LOW;

SET_CS_LOW;

}

// case 4 - may be case 3 from above or CS and clk may both have been low

// if we were converting on ADC then see if it is ready. Wait until SDI goes low

// but if we timeout, just try resetting anyway - we'll discover the fault

// when we try to get the result (might as well be an optimist :-))

if(TARGET_SDO_LOW != 0)

{

if(TIMEOUT_NOT_HAPPENED_YET)

return;

}

// ok, so SDO is low - we are probably in data IO phase. Clock it 5 times then make it a case 2

// and case 2 will pulse CS high then low to start conversion as normal

CLOCK_HIGH_THEN_LOW_5_TIMES_LEAVING_CLOCK_HIGH
 return;

 }
Else

 WAIT_FOR_ADC_RESULT_AND_READ_IT_ETC_ETC
